Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hum Evol ; 189: 103512, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38461589

RESUMEN

Neanderthal anterior teeth are very large and have a distinctive morphology characterized by robust 'shovel-shaped' crowns. These features are frequently seen as adaptive responses in dissipating heavy mechanical loads resulting from masticatory and non-masticatory activities. Although the long-standing debate surrounding this hypothesis has played a central role in paleoanthropology, is still unclear if Neanderthal anterior teeth can resist high mechanical loads or not. A novel way to answer this question is to use a multidisciplinary approach that considers together tooth architecture, dental wear and jaw movements. The aim of this study is to functionally reposition the teeth of Le Moustier 1 (a Neanderthal adolescent) and Qafzeh 9 (an early Homo sapiens adolescent) derived from wear facet mapping, occlusal fingerprint analysis and physical dental restoration methods. The restored dental arches are then used to perform finite element analysis on the left central maxillary incisor during edge-to-edge occlusion. The results show stress distribution differences between Le Moustier 1 and Qafzeh 9, with the former displaying higher tensile stress in enamel around the lingual fossa but lower concentration of stress in the lingual aspect of the root surface. These results seem to suggest that the presence of labial convexity, lingual tubercle and of a large root surface in Le Moustier 1 incisor helps in dissipating mechanical stress. The absence of these dental features in Qafzeh 9 is compensated by the presence of a thicker enamel, which helps in reducing the stress in the tooth crown.


Asunto(s)
Hombre de Neandertal , Humanos , Adolescente , Animales , Incisivo , Simulación por Computador , Análisis de Elementos Finitos , Coronas , Estrés Mecánico
2.
PLoS One ; 18(10): e0293090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851635

RESUMEN

The Iron Age is characterized by an extended interweaving of movements by Celts in Europe. Several waves of Celts from Western and Central Europe migrated southeast and west from the core area of the La Téne culture (between Bourgogne and Bohemia). Through the analysis of non-metric dental traits, this work aims to understand the biological relationship among Celtic groups arrived in Italy and the Carpathian Basin, as well as between local populations and Celtic newcomers. A total of 10 non-metric dental traits were analyzed to evaluate biological affinities among Celts (Sopron-Krautacker and Pilismarót-Basaharc) and Scythians-related populations from Hungary (Tápiószele), Celts from continental Europe (Switzerland and Austria), two Iron Age Etruscan-Celtic sites from northern Italy (Monterenzio Vecchio and Monte Bibele), 13 Iron Age central-southern Italic necropolises, and the northern Italian Bronze Age necropolis of Scalvinetto. Strontium isotopes were measured on individuals from the necropolis of Monte Bibele to infer their local or non-local origin. Results highlight the existence of statistically significant differences between Celts and autochthonous Italian groups. Celtic groups from Hungary and Italy (i.e., non-local individuals of Monterenzio Vecchio and Monte Bibele) share a similar biological background, supporting the historical records mentioning a common origin for Celts migrated to the eastern and southern borders of today's Europe. The presence of a supposed Steppean ancestry both in Celts from Hungary and Celts from northern Italy corroborates the hypothesis of the existence of a westward migration of individuals and genes from the Steppe towards northern Italy during the Bronze and Iron Age, which contributed to the biological variability of pre-Celtic and later Celtic populations, respectively. Conversely, individuals from central-southern Italy show an autochthonous pre-Iron Age background. Lastly, this work supports the existence of Celtic migratory routes in northern Italy, as shown by biological and cultural admixture between Celts and Italics living together.


Asunto(s)
Fenotipo , Humanos , Hungría , Italia , Europa (Continente) , Austria
3.
PLoS One ; 17(10): e0275614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227961

RESUMEN

In this study we explore the potential of combining traditional zooarchaeological determination and proteomic identification of morphologically non-diagnostic bone fragments (ZooMS) collected from the Uluzzian levels of three Italian sites: Uluzzo C Rock Shelter, Roccia San Sebastiano cave, and Riparo del Broion. Moreover, we obtained glutamine deamidation ratios for all the contexts analysed during routine ZooMS screening of faunal samples, giving information on collagen preservation. We designed a selection protocol that maximizes the efficiency of the proteomics analyses by excluding particularly compromised fragments (e.g. from taphonomic processes), and that aims to identify new human fragments by favouring bones showing morphological traits more similar to Homo. ZooMS consistently provided taxonomic information in agreement with the faunal spectra outlined by traditional zooarchaeology. Our approach allows us to delineate and appreciate differences between the analysed contexts, particularly between the northern and southern sites, related to faunal, environmental, and climate composition, although no human remains were identified. We reconstructed the faunal assemblage of the different sites, giving voice to morphologically undiagnostic bone fragments. Thus, the combination of these analyses provides a more complete picture of the faunal assemblage and of the paleoenvironment during the Middle-Upper Palaeolithic transition in Italy.


Asunto(s)
Fósiles , Glutamina , Arqueología , Huesos , Cuevas , Proteómica
4.
Sci Rep ; 12(1): 8104, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577834

RESUMEN

We present the results of a multi-disciplinary investigation on a deciduous human tooth (Pradis 1), recently recovered from the Epigravettian layers of the Grotte di Pradis archaeological site (Northeastern Italian Prealps). Pradis 1 is an exfoliated deciduous molar (Rdm2), lost during life by an 11-12-year-old child. A direct radiocarbon date provided an age of 13,088-12,897 cal BP (95% probability, IntCal20). Amelogenin peptides extracted from tooth enamel and analysed through LC-MS/MS indicate that Pradis 1 likely belonged to a male. Time-resolved 87Sr/86Sr analyses by laser ablation mass spectrometry (LA-MC-ICPMS), combined with dental histology, were able to resolve his movements during the first year of life (i.e. the enamel mineralization interval). Specifically, the Sr isotope ratio of the tooth enamel differs from the local baseline value, suggesting that the child likely spent his first year of life far from Grotte di Pradis. Sr isotopes are also suggestive of a cyclical/seasonal mobility pattern exploited by the Epigravettian human group. The exploitation of Grotte di Pradis on a seasonal, i.e. summer, basis is also indicated by the faunal spectra. Indeed, the nearly 100% occurrence of marmot remains in the entire archaeozoological collection indicates the use of Pradis as a specialized marmot hunting or butchering site. This work represents the first direct assessment of sub-annual movements observed in an Epigravettian hunter-gatherer group from Northern Italy.


Asunto(s)
Arqueología , Espectrometría de Masas en Tándem , Arqueología/métodos , Niño , Cromatografía Liquida , Humanos , Isótopos , Italia , Masculino
6.
Am J Biol Anthropol ; 179(1): 18-30, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36790758

RESUMEN

OBJECTIVES: During the middle-to-upper Paleolithic transition (50,000 and 40,000 years ago), interaction between Neanderthals and Homo sapiens varied across Europe. In southern Italy, the association between Homo sapiens fossils and non-Mousterian material culture, as well as the mode and tempo of Neanderthal demise, are still vividly debated. In this research, we focus on the study of two human teeth by using 3D geometric morphometric approaches for a reliable taxonomical attribution as well as obtaining new radiometric dates on the archeological sequence. MATERIAL AND METHODS: This work presents two lower deciduous molars uncovered at Roccia San Sebastiano (Mondragone-Caserta, Italy), stratigraphically associated with Mousterian (RSS1) and Uluzzian (RSS2) artifacts. To obtain a probabilistic attribution of the two RSS teeth to each reference taxa group composed of Neanderthals and Homo sapiens, we performed and compared the performance of three supervised learning algorithms (flexible discriminant analysis, multiadaptive regression splines, and random forest) on both crown and cervical outlines obtained by virtual morphometric methods. RESULTS: We show that RSS1, whose Mousterian context appears more recent than 44,800-44,230 cal BP, can be attributed to a Neanderthal, while RSS2, found in an Uluzzian context that we dated to 42,640-42,380 cal BP, is attributed to Homo sapiens. DISCUSSION: This site yields the most recent direct evidence for a Neanderthal presence in southern Italy and confirms a later shift to upper Paleolithic technology in southwestern Italy compared to the earliest Uluzzian evidence at Grotta del Cavallo (Puglia, Italy).


Asunto(s)
Hombre de Neandertal , Humanos , Animales , Italia , Europa (Continente) , Diente Primario , Tecnología
7.
Interface Focus ; 11(5): 20200083, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34938433

RESUMEN

Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.

8.
Sci Rep ; 11(1): 22078, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34837003

RESUMEN

Evidence of mobiliary art and body augmentation are associated with the cultural innovations introduced by Homo sapiens at the beginning of the Upper Paleolithic. Here, we report the discovery of the oldest known human-modified punctate ornament, a decorated ivory pendant from the Paleolithic layers at Stajnia Cave in Poland. We describe the features of this unique piece, as well as the stratigraphic context and the details of its chronometric dating. The Stajnia Cave plate is a personal 'jewellery' object that was created 41,500 calendar years ago (directly radiocarbon dated). It is the oldest known of its kind in Eurasia and it establishes a new starting date for a tradition directly connected to the spread of modern Homo sapiens in Europe.

10.
Sci Rep ; 9(1): 13130, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511583

RESUMEN

Recent work has disclosed the critical role played by enamel peptides in sex classification of old skeletal remains. In particular, protein AMELY (amelogenin isoform Y) is present in the enamel dental tissue of male individuals only, while AMELX (isoform X) can be found in both sexes. AMELY can be easily detected by LC-MS/MS in the ion extracted chromatograms of the SM(ox)IRPPY peptide (monoisotopic [M + 2 H]+2 mass = 440.2233 m/z). In this paper, we exploited the dimorphic features of the amelogenin protein to determine the sex of the so-called 'Lovers of Modena', two Late Antique individuals whose skeletons were intentionally buried hand-in-hand. Upon discovery, mass media had immediately assumed they were a male-female couple, even if bad preservation of the bones did not allow an effective sex classification. We were able to extract proteins from the dental enamel of both individuals (~1600 years old) and to confidently classify them as males. Results were compared to 14 modern and archaeological control samples, confirming the reliability of the ion chromatogram method for sex determination. Although we currently have no information on the actual relationship between the 'Lovers of Modena' (affective? Kin-based?), the discovery of two adult males intentionally buried hand-in-hand may have profound implications for our understanding of funerary practices in Late Antique Italy.


Asunto(s)
Amelogenina/genética , Proteínas del Esmalte Dental/genética , Esmalte Dental/metabolismo , Paleontología/métodos , Fragmentos de Péptidos/metabolismo , Análisis para Determinación del Sexo/métodos , Amelogenina/metabolismo , Proteínas del Esmalte Dental/metabolismo , Femenino , Humanos , Italia , Masculino , Fragmentos de Péptidos/análisis , Reacción en Cadena de la Polimerasa
11.
Nature ; 573(7773): 214-219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462770

RESUMEN

The cranial morphology of the earliest known hominins in the genus Australopithecus remains unclear. The oldest species in this genus (Australopithecus anamensis, specimens of which have been dated to 4.2-3.9 million years ago) is known primarily from jaws and teeth, whereas younger species (dated to 3.5-2.0 million years ago) are typically represented by multiple skulls. Here we describe a nearly complete hominin cranium from Woranso-Mille (Ethiopia) that we date to 3.8 million years ago. We assign this cranium to A. anamensis on the basis of the taxonomically and phylogenetically informative morphology of the canine, maxilla and temporal bone. This specimen thus provides the first glimpse of the entire craniofacial morphology of the earliest known members of the genus Australopithecus. We further demonstrate that A. anamensis and Australopithecus afarensis differ more than previously recognized and that these two species overlapped for at least 100,000 years-contradicting the widely accepted hypothesis of anagenesis.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Hominidae/clasificación , Cráneo/anatomía & histología , Animales , Diente Canino/anatomía & histología , Etiopía , Cara/anatomía & histología , Maxilar/anatomía & histología , Especificidad de la Especie , Hueso Temporal/anatomía & histología , Factores de Tiempo
12.
Int J Paleopathol ; 25: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913508

RESUMEN

OBJECTIVE: To evaluate, via a multidisciplinary approach, a distinctive paleopathological condition believed to be fibrous dysplasia, found on a 19th/20th century skeleton from Certosa Monumental Cemetery, Bologna, Italy. MATERIALS: A skeletonized cranium and mandible recovered from an ossuary in 2014. METHODS: Pathological alterations were analysed by radiological examination, dental macrowear, histopathological and genetic analyses. RESULT: The skeleton is believed to be an adult male. Differential diagnoses include Paget's disease, McCune-Albright syndrome, osteochondroma and osteosarcoma. The radiographic findings, along with the solitary nature of the lesions, are strong evidence for the diagnosis of fibrous dysplasia (FD). Genetic analysis further revealed a frequency of ˜1% of mutant alleles with the R201C substitution, one of the post-zygotic activating mutation frequently associated with FD. CONCLUSIONS: The multi-analytical method employed suggests a diagnosis of monostotic form of FD. The diagnostic design incorporates multiple lines of evidence, including macroscopic, histopathological, and genetic analyses. SIGNIFICANCE: Through the use of a multi-analytic approach, robust diagnoses can be offered. This case serves as one of the oldest examples of FD from an historical context. The genetic mutation detected, associated with FD, has not been previously reported in historical/ancient samples.


Asunto(s)
Displasia Fibrosa Craneofacial/diagnóstico por imagen , Adulto , Sustitución de Aminoácidos , Cementerios/historia , Displasia Fibrosa Craneofacial/genética , Displasia Fibrosa Craneofacial/historia , Displasia Fibrosa Craneofacial/patología , Displasia Fibrosa Poliostótica/diagnóstico por imagen , Displasia Fibrosa Poliostótica/historia , Displasia Fibrosa Poliostótica/patología , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Italia , Masculino , Mutación , Osteítis Deformante/diagnóstico por imagen , Osteítis Deformante/patología , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/historia , Osteosarcoma/patología , Tomografía Computarizada por Rayos X/historia
13.
PLoS One ; 13(3): e0193796, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590155

RESUMEN

The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of non-continental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations.


Asunto(s)
Cultura , Ritos Fúnebres/historia , Dinámica Poblacional/historia , Diente/anatomía & histología , Diente/química , Análisis por Conglomerados , Femenino , Historia Antigua , Humanos , Italia , Masculino , Isótopos de Estroncio/análisis , Reino Unido/etnología
14.
Ann Hum Biol ; 45(1): 34-43, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29216758

RESUMEN

BACKGROUND: Archaeological data provide evidence that Italy, during the Iron Age, witnessed the appearance of the first communities with well defined cultural identities. To date, only a few studies report genetic data about these populations and, in particular, the Piceni have never been analysed. AIMS: To provide new data about mitochondrial DNA (mtDNA) variability of an Iron Age Italic population, to understand the contribution of the Piceni in shaping the modern Italian gene pool and to ascertain the kinship between some individuals buried in the same grave within the Novilara necropolis. SUBJECTS AND METHODS: In a first set of 10 individuals from Novilara, we performed deep sequencing of the HVS-I region of the mtDNA, combined with the genotyping of 22 SNPs in the coding region and the analysis of several autosomal markers. RESULTS: The results show a low nucleotide diversity for the inhabitants of Novilara and highlight a genetic affinity of this ancient population with the current inhabitants of central Italy. No family relationship was observed between the individuals analysed here. CONCLUSIONS: This study provides a preliminary characterisation of the mtDNA variability of the Piceni of Novilara, as well as a kinship assessment of two peculiar burials.


Asunto(s)
ADN Mitocondrial/análisis , Variación Genética , Haplotipos , Polimorfismo de Nucleótido Simple , Arqueología , ADN Antiguo/análisis , Femenino , Humanos , Italia , Masculino
16.
Am J Phys Anthropol ; 163(3): 446-461, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28345756

RESUMEN

OBJECTIVES: Early evidence for the treatment of dental pathology is found primarily among food-producing societies associated with high levels of oral pathology. However, some Late Pleistocene hunter-gatherers show extensive oral pathology, suggesting that experimentation with therapeutic dental interventions may have greater antiquity. Here, we report the second earliest probable evidence for dentistry in a Late Upper Paleolithic hunter-gatherer recovered from Riparo Fredian (Tuscany, Italy). MATERIALS AND METHODS: The Fredian 5 human consists of an associated maxillary anterior dentition with antemortem exposure of both upper first incisor (I1 ) pulp chambers. The pulp chambers present probable antemortem modifications that warrant in-depth analyses and direct dating. Scanning electron microscopy, microCT and residue analyses were used to investigate the purported modifications of external and internal surfaces of each I1 . RESULTS: The direct date places Fredian 5 between 13,000 and 12,740 calendar years ago. Both pulp chambers were circumferentially enlarged prior to the death of this individual. Occlusal dentine flaking on the margin of the cavities and striations on their internal aspects suggest anthropic manipulation. Residue analyses revealed a conglomerate of bitumen, vegetal fibers, and probable hairs adherent to the internal walls of the cavities. DISCUSSION: The results are consistent with tool-assisted manipulation to remove necrotic or infected pulp in vivo and the subsequent use of a composite, organic filling. Fredian 5 confirms the practice of dentistry-specifically, a pathology-induced intervention-among Late Pleistocene hunter-gatherers. As such, it appears that fundamental perceptions of biomedical knowledge and practice were in place long before the socioeconomic changes associated with the transition to food production in the Neolithic.


Asunto(s)
Caries Dental/terapia , Restauración Dental Permanente/historia , Caries Dental/historia , Caries Dental/patología , Historia de la Odontología , Historia Antigua , Humanos , Incisivo/patología , Italia , Paleopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...